

G DATA TechPaper #0271

G DATA Software AG | January 2018

Patch Management Best Practices

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 2

Contents

1. Introduction .. 3

1.1. Definition ...3

1.2. Significance ..3

1.3. Compliance ..4

2. Patch management .. 5

2.1. Patch management policy ..6

2.2. Enterprise versus small businesses (SMB) ...7

3. Patch management procedure .. 9

3.1. Step 1: Inventory update ...9

3.2. Step 2: Information gathering ... 11

3.3. Step 3: Strategy and planning ... 13

3.4. Step 4: Testing .. 15

3.5. Step 5: Schedule and assessment ... 17

3.6. Step 6: Patch deployment ... 18

3.7. Step 7: Verification and reporting ... 20

4. G DATA Patch Management .. 20

4.1. Step 1: Inventory update ... 21

4.2. Step 2: Information gathering ... 22

4.3. Step 3: Strategy and planning ... 23

4.4. Step 4: Testing .. 24

4.5. Step 5: Schedule and assessment ... 26

4.6. Step 6: Patch deployment ... 26

4.7. Step 7: Verification and reporting ... 26

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 3

1. Introduction
The increased complexity of enterprise networks and the ever-present threat of malware present a
challenge for every network and system administrator. Not only has the number of software
installations to be patched risen significantly, the speed at which vulnerabilities are being
exploited has also strongly increased. To deal with the task of patch installation, specialized patch
management systems perform automated tasks and ensure timely deployment of security-related
fixes. To develop a full workflow around patch management, including full control of network
assets and software, enterprises need to think of more than just software to manage deployment.
To assist in effectively running a patch management procedure, this document will outline
standards in patch management, as well as recommendations and best practices for small
businesses with up to 50 network clients as well as large networks.

1.1. Definition
Even though many vendors strive for perfection at release time, most software products will need
to be serviced with updates and patches during their lifetime. Typically, updates provide new
functionality or better performance, while patches fix software bugs. The former category is
usually not of critical importance for enterprise deployment, but the latter requires swift action:
especially in the case of security issues, patches should quickly be deployed across the corporate
network to prevent possible exploitation.

Patch management aims to streamline deployment of patches. Updates are often included in the
process, making use of the technical and organizational infrastructure that is being set up to create
a unified update/patch management system (UPMS). A complete UPMS comprises more than just
the technical possibilities to deploy patches across the network. The time spent on actual
deployment should be minimized to focus available resources on recognizing, classifying and
remediating security issues. Depending on the size of the organization, this may require dedicated
personnel or at the very least workflow procedures to ensure speedy decision making in case of
security emergencies.

Patch management procedures should be used in any company where the integrity and security of
the computer network need to be managed efficiently. This goes for small business networks as
much as for large enterprise networks. Centralizing patch management helps establishing a
security baseline for the whole network and facilitates simple and swift patch deployment.

1.2. Significance
Patches often repair security vulnerabilities through which attackers may gain access to systems
running the affected software. In responding to security emergencies, rapid deployment of patches
is important. A complicating factor, the release of a patch actually stimulates hackers to develop
and exploit the security bug, due to the public release of information about the vulnerability that
typically accompanies patch releases. By reverse-engineering patch files, attackers can obtain the
information necessary to stage an effective attack. This puts extra pressure on administrators to
timely patch their systems. Patch management helps speed up patch deployment and improves

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 4

the efficiency of the complete process by coordinating and standardizing patch deployment
procedures.

Not applying patches leaves systems exposed. Attackers who take advantage of software bugs can,
depending on the severity of the issue, gain access to files saved on a PC, execute programs, take
over other PCs in the corporate network, or worse. While a malware infection through a drive-by
download or an attack from hackers are annoying for home users, corporate networks are
especially vulnerable. The stakes are much higher: the mere presence of a hacker in the company
network compromises data integrity, and can lead to loss of data if one or more systems are
irreparably damaged. Further threats include downtime for critical systems, intellectual property
theft, loss of reputation, or excessive costs for legal defense if customer data is lost.

Standardized patching procedures help prevent successful exploitation of software bugs by
hackers. However, patch management is not the only measure that should be taken. Even if
software is fully patched, hackers may be aware of bugs that have not been discovered yet by the
software vendors. Business infrastructure should always be protected by security solutions on the
client and network level, providing measures such as signature-based malware scans and
proactive detection technologies.

1.3. Compliance
Regulations for patch management as an independent process rarely exist. For many companies,
patch management is part of a wider array of measures taken in the context of information
security. This field is well documented and many large companies already comply with the
applicable standards, most notably ISO/IEC 27002:20131. This standard, which has been adapted
by many national standards bodies, establishes guidelines for all aspects of organizational
information management, and presents standards for a complete information security
management system. Similarly, the Information Security Forum’s Standard of Good Practice is a
best-practices based guide to information security2. Additionally, ISO standard 15408-1:2009, also
known as Common Criteria for Information Technology Security Evaluation (CC), provides a
framework to specify, implement and test security requirements3.

On a more practical level, government agencies in several countries have published their own
standards and recommended practices regarding patch management. Businesses in the United
States, for example, can consult the expertise of the National Institute of Standards and
Technology’s Guide to Enterprise Patch Management Technologies (SP 800-40 Rev. 3)4. Europe’s
national governments have undertaken similar endeavors. The United Kingdom National Cyber
Security Centre provides a document called Manage Vulnerabilities – A Good Practice Guide, aimed
at critical national infrastructure organizations5. In Germany, the Federal Office for Information

1 https://www.iso.org/standard/54533.html
2 https://www.securityforum.org/tool/the-isf-standardrmation-security/
3 https://www.commoncriteriaportal.org/cc
4 https://www.nist.gov/publications/guide-enterprise-patch-management-technologies
5 https://www.ncsc.gov.uk/content/files/protected_files/guidance_files/SICS%20-Manage%20Vulnerabilities%20Final%20v1.0.pdf

http://www.commoncriteriaportal.org/cc

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 5

Security (BSI) provides advice to small companies6 as well as large enterprises7, as part of a wider
change management advisory.

2. Patch management
Patch management is important for each computer, be it a home device or corporate workstation.
The availability of new security patches should be actively monitored and fixes should be deployed
as soon as possible. The way in which they are managed and deployed is mostly a question of
scale. For home users, Microsoft’s built-in update functionality can provide security fixes for
Windows in a completely automated way, and many vendors have moved towards a fully
transparent, automatic updating process, such as Adobe Reader or Google Chrome. Nevertheless,
the complexity of keeping an overview of all installed software, its vulnerabilities, and its patches
can be overwhelming for individual PC users – let alone administrators of business networks with
any number from five up to thousands of clients. This is where a standardized, recurring patch
management procedure can help, by reducing the time required to take an inventory of software
and vulnerabilities, and by automating the deployment. An effective patch management
procedure clarifies which responsibilities lay with whom, tracks all changes that are being made,
provides a rollback method, tests all proposed changes extensively, and announces changes to all
involved parties.

Image 1: Patch management cycle

6 https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/_content/m/m02/m02221.html
7 https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/_content/baust/b01/b01014.html

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 6

The patch management cycle can be broken down into different stages (which will be discussed in
detail in chapter 3). Most importantly, it is a cycle, not an event-driven process. Patches should be
proactively deployed, therefore patch management should be proactively carried out. Each step of
the cyclical procedure should be explicitly defined and assigned to someone. Depending on their
wishes and requirements, companies can merge stages by bundling them and assigning them to
the same person, or define further action points as required. Integration with existing change
management and release management standards is desirable. Some steps of the procedure can be
automated, most notably the deployment, but several key actions will have to be carried out
manually for each cycle. To optimize this process, planning is crucial.

The rate of recurrence of the patch management cycle depends on the resources that can be made
available to execute it, as well as on the rate with which patches are published for software that is
in use in the network. A major source of patches is Microsoft, whose Windows operating system is
served with the latest security updates and improvements monthly. This predictable patch cycle is
scheduled to occur on a fixed date: every second Tuesday of the month. This allows system
administrators to plan a recurring, reliable procedure to roll out the latest updates every month.
Some other vendors have chosen to align their update cycle with Microsoft, whereas other vendors
release updates less frequently, such as Oracle, which has chosen to distribute security patch
bundles for the widely used Java platform every three to four months. Some vendors choose to
release patches whenever a critical issue comes up. For patch management planning, this quick
response time comes at a price: it may take some time before an unpredictably released patch is
thoroughly tested and deployed. On the other hand, rigid patch bundling can cause some security
holes to go unpatched for a significant time until the next patch release date.

2.1. Patch management policy
Before planning the monthly steps for a patch management cycle and assigning responsibilities,
some standards have to be defined. A patch management policy helps decision making during the
cycle. The policy should cover questions about patching strategy. Should all available patches be
installed by default, or will there be a classification, possibly based on the severity of the security
issues they remedy? Will patches be installed proactively (to plug possible security holes) or
reactively (only when problems arise), or a combination of both? To prevent spending unnecessary
time on patch-by-patch decisions, it is recommended to set as many generalized rules as possible.
At the same time, simply installing every available patch is not a solution: to prevent network and
system overload and compatibility problems, conscious choices need to be made.

Other parameters on which the patch management cycle depends include installation standards,
network standards, and application security configuration. While each cycle includes making an
inventory of the current state of the network, effort is greatly reduced when the network
environment has been set up following a standard. Define which software installations are
allowed, and which machines are provided with which software. Using whitelists or blacklists, the
network software inventory can be limited, greatly helping patch deployment. The same goes for
security configuration, user accounts and passwords.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 7

By standardizing policies across the network, there will be fewer exceptions to be handled during
patch deployment. However, it can still be fruitful to define actions to undertake in case exceptions
do occur. Administrators should not be surprised by machines that turn out to be unreachable at
deployment time, patches that cause compatibility problems during testing or deployment, or
security issues that do not seem to have been mitigated successfully after patching. Swift
redeployment, software reconfiguration and incident escalation should be defined as part of the
patch management policy.

An important aspect to keep in mind is the deployment of new machines in a corporate network.
While outside the strict scope of patch management, it is important to make sure that system
images with which new clients are deployed are maintained with the latest patches. If outdated
systems get deployed, there is a vulnerability window that will only be closed once the newly
deployed machine has become part of the patch management cycle and its inventory has been
listed.

2.2. Enterprise versus small businesses (SMB)
Business clients require more control over how and when which patches are installed than home
users. Using the standard update mechanisms for each installed product leads to a chaotic
network state, where some clients are running other software versions than others. Centrally
administering updates benefits every business network, by reducing the impact on usability and
ensuring a speedy mitigation of security issues. However, not all business networks are created
equally. Patch management for enterprise networks differs from SMB networks.

For enterprise patch management, it is important to make a proper assessment of the network
organization and zones, and of the different roles of network clients. Depending on the size of the
network, there can be several client groups, each of which has its own distinct configuration. Some
groups can be served with almost every patch available, while others need to be tested more
carefully. Consider the following example:

Image 2: Enterprise network organization

A corporation with multiple business groups across several disciplines usually cannot apply the
same patches policy to all groups. The different software packages that are in use across groups
are one issue, but especially the impact that patches can have on work environments is

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 8

problematic. While generic client configurations (Microsoft Office, browser), which are often used
for back-office client roles, can easily be patched, some business groups may need a work
environment that does not change. Clients that are used in a Quality Assurance role or similar
functions that depend on unchanging environments will have to be carefully integrated into the
UPMS, or manually serviced.

Lack of manpower and budget are the main challenges preventing SMBs from running a full-time
patch management procedure monitoring the latest security issues in near real-time. At the same
time, they are a major target for cyber criminals, who are aware of the lack of attention to security
and lack of budget for sophisticated security tools. Therefore, patch management for small
businesses, while based on the same cycle as the enterprise procedure, has a few key differences.
To make sure that the procedure can also be carried out in networks where there is no budget or
manpower for permanent protection, many measures can be scaled down.

Image 3: SMB network organization

Patching strategy and testing are simplified enormously when the number of scenarios to be
tested is reduced. Smaller companies have significantly less business groups, and therefore less
diversity in network client roles. Still, as with enterprise patch management, it is essential to spend
some time to produce an abstract overview of the network and the types of clients running in it.
The diagram shows a company with only one business group. An SMB with only one production
specialization can divide its network clients into just two or three roles. The variety of patches to
be installed is a lot smaller and even though no steps of the patch management cycle are being
omitted, they take considerably less time. Further efficiency increases can be achieved by
extensively standardizing software deployments across the network. Especially for smaller
companies that might not have a dedicated system or network administrator, streamlining the
procedure is important. SMBs can use a patch management solution to automate almost the
whole cycle. Keeping up to date with the latest exploit information and software versions can
require a lot of time; a patch management solution can help those companies that do not have the
manpower to continuously monitor their network security status. An alternative is to completely
outsource IT security, including patch management, to a service provider that will take care of it as
a managed service.

As a helpful tool, small businesses can create a checklist or todo-list to serve as a guideline to
patch management. Based on the patch management cycle, a checklist provides a way to run
through the most important actions relatively quickly. For SMBs, it can even replace the expansive

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 9

patch management policy, but it still needs to define many of the points that the policy calls
attention to:

Inventory update
 List installed products across the network and their vendors
 Find out the patch cycle for each vendor
 Prioritize products by importance

Information gathering
 Check for new patches once per patch cycle for each vendor

Testing
 Test the patches for all applicable systems

Patch deployment
 Deploy patches and verify deployment

3. Patch management procedure

3.1. Step 1: Inventory update
The first step of the patch management cycle is to update the inventory. For each cycle, this
overview needs to be updated and complemented with information such as software version
numbers for all machines. In order to establish or update the inventory, it must first be made sure
that all relevant network clients are surveyed. Many Windows-based enterprise networks make use
of Active Directory services. The domain controller can easily produce a list of all clients that are
available in the network domain(s). However, this still leaves out a potentially large number of
machines that have not joined the Windows domain. A lower-level list of network clients can be
obtained by accessing the log files of the network’s DHCP server (IP address or subnet scan) or by
checking the local DNS registrations. A combination of these methods will produce the best results,
as not all machines will be listed by every method. Scans at multiple points in time are necessary to
obtain a full list. For smaller networks, obtaining an overview of clients should not be problematic.
If Windows File and Printer Sharing has been enabled, the machines should show up in the
Network Places window. The presence of virtual machines within the network might complicate
the process. Still, listing them as integral part of the network and patching them accordingly is
vital, because each virtual machine represents a potential entry point into the network.

As part of the patch management strategy, network clients and their configuration should be
deployed following certain standards, making the production of a full software list relatively easy.
Deploying only software that is absolutely required decreases the likelihood of security holes being
present in the system and makes patch management less time-intensive. Monitoring software
installations, or completely blocking non-approved software, greatly reduces the amount of time
spent on identifying, obtaining and distributing patches. Using a software blacklist or whitelist is

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 10

an efficient way to limit new software installations. Moreover, end users should not be able to
modify patch and updater settings for their local software installations to prevent discrepancies
between local deployments and server policies. This includes disabling auto-updaters for software
such as Flash Player and Adobe Reader, as well as stand-alone Windows Update services. Carefully
check all deployed software for their update policies and make sure the functions are taken care of
centrally.

Sets of information that should be obtained as part of the inventory include version information of
the operating system that is being used and a full list of software and patches. This data is the very
minimum that need to be collected for every network client, to enable easy inquiries about
available patches. Along similar lines, collecting information about the hardware in use can help
prevent or circumvent problems like a lack of disk space or CPU power to process patches. As with
software, a baseline hardware deployment greatly simplifies the identification process and makes
the whole procedure more predictable.

To make sure that the actual deployment can be carried out without problems, take note of all
services running on the network clients. During the initial client deployment, these should already
have been configured for maximal performance and minimal vulnerability. The less services that
are running on a client, the less likely it is that one of them can be used as an attack vector. During
the inventory phase, superfluous services can be identified and disabled to make sure that none of
them are interfering with the patching process. Similarly, make sure that each client can be
accessed with the correct permissions required to install software. Without administrator access,
the patching process cannot be carried out successfully. Finally, ensure that all machines have
proper, uninterrupted network access at a decent speed. Problems with network connectivity,
either by high network load or local issues, can cause a significant number of error messages that
later need to be analyzed manually, substantially slowing down patch deployment.

Using agentless information gathering, servers can pull information from network clients without
the need of having agent software installed on each machine. For example, some software
vulnerabilities can be detected by network-based vulnerability scanners. Running a vulnerability
scan as part of the inventory phase helps in quickly locating security issues that need to be
patched, but it does not always provide information about patch availability or workarounds.
Another downside of agentless scanning is the issue of how to scan machines that are not always
connected to the enterprise network, or not always turned on. Agent-based scanning circumvents
these issues. Agents connect to the server as soon as the clients are powered on. No network-wide
scanning schedule is required. Another advantage over agentless scanning methods is the
integration of patch management with existing agent-based security solutions. Information that is
gathered in the context of the regular protection can easily be repurposed for the patch
management cycle.

Not all clients can be included in the patch management cycle. While the greatest effort should be
made to provide all machines with the latest updates, there are valid reasons for excluding some
clients. Some business groups may need unchanging environments (for testing, evaluation and
comparison purposes), requiring extra tests before patch deployment. Similarly, legacy clients will
need extra attention. Some legacy software may require older operating systems or software
which fall outside the software baseline or are not maintained anymore. Patching such systems

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 11

can break system critical applications so extra testing is in order. Some legacy software can require
a separate vendor patch to add compatibility with patched versions of other software. It is
important to discover this kind of requirements as early as possible. If the inventory phase
indicates that legacy software is being run, there is a higher possibility of compatibility issues.

Clients that are not always connected to the network, such as laptops for personnel on the road, or
VPN clients, can still be patched during the regular cycle, but they might not connect to the
network until well after the scheduled inventory or deployment time. Make sure that network and
machine load do not spike upon first logon; spreading inventory and deployment jobs over time
for this type of clients is advisable. Virtual machines that are running directly in the company’s
network should also be managed, if they are not separated from the regular production
environment by security appliances or VLAN configuration.

In general, machines that for whichever reason are not (yet) included in the patch management
cycle, or have outdated software installations, should be tested extra carefully for security holes
and malware infections. Scheduling extra malware scans or setting up a separate network or
firewall zone helps prevent problems. Using security policies, access to network resources can be
restricted. Blocking removable media from being used can prevent eventual malware infections
from spreading across the network.

3.2. Step 2: Information gathering
As soon as a full inventory has been produced or updated, it is important to keep tabs on new
releases of software updates and patches, as well as exploits and other possible security issues. For
every product deployed on network clients, the administrator should ideally always know at which
version it is, if there are any known bugs or security holes, and whether patches or updates are
available. This is important for both enterprise and SMB networks: even if an SMB does not have
budget to appoint a full-time systems administrator, information gathering is the basis of a
responsible patch management procedure. Relying on a third party aggregator, such as news
websites, or patch management solutions that offer notifications for new patches, can save time.

A very basic method of checking for updates is contacting the respective vendors. Most software
vendors publish software updates on their website, often including release notes detailing the
latest fixes and additions. Some websites have RSS or e-mail notification services available, a low-
cost and highly effective way to stay up to date. While getting information directly from the source
is a very reliable way to ensure authenticity, having to check for updates for each product
separately involves a lot of unnecessary work. Many patch management software solutions
maintain their own database of version information, allowing administrators to quickly compare
their inventory to the latest available patch information. While there is a risk in depending on a
third party for information about updates, because as an administrator you would not be getting
information directly from the vendor, the use of a third party database greatly simplifies the
process of information gathering. Third party databases offer information of a higher quality, often
enriched with additional patch classifications, verification of patches and documentation about
compatibility with well-known business software products.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 12

Image 4: Vendor security advisories8

While information about the patches themselves is vital for managing a software environment, it
does not cover the whole spectrum. Before a patch is released, there are several stages of patch
development during which it is already known that a patch is forthcoming. When a software
vendor becomes aware of a security issue, they often publish a security advisory. An advisory
usually contains details about the severity of the issue, as well as a timeline for patch
development. Temporary workarounds may be available to allow administrators to mitigate the
issue before the vendor releases the patch.

Vendors can choose to notify a CVE Numbering Authority, which manages the database of
Common Vulnerabilities and Exposures (CVE). Many vulnerabilities are assigned a CVE number,
enabling easy communication about the issue even before a patch is being released. The central
CVE database can help administrators in keeping track of software vulnerabilities that will need to
be patched at some point. The central database is being maintained by the United States National
Institute of Standards and Technology (NIST)9. Although the CVE database is a widely used central
repository, not all security holes are submitted there.

In spite of some vulnerabilities never making it into the CVE database, it still produces a sizable
daily output of information. For most administrators, tracking all newly assigned CVE numbers will
prove too labor-intensive. Independent sites as well as government-sponsored computer
emergency response teams (CERTs) are useful sources of information. The United States
Department of Homeland Security, for example, posts vulnerability updates and background
information at its homepage10. Europe features national bodies as well as the centrally

8 https://portal.msrc.microsoft.com/en-us/security-guidance
9 https://nvd.nist.gov
10 https://www.us-cert.gov

http://nvd.nist.gov/

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 13

coordinated CERT-EU11 and the European Network and Information Security Agency12. Most of
these websites provide security advice as well as regular news updates.

Image 5: Common Vulnerabilities and Exposures (CVE) database entry13

Both vendor information and CVE database listings provide relatively technical information, based
on incidents. CERT information is usually more accessible, and can also be instructive to stay
informed about general trends in malware. Several media outlets offer online articles about
aspects of computer security. Antivirus vendors themselves often release informative whitepapers
or maintain blogs covering the latest threats.

3.3. Step 3: Strategy and planning
As soon as information about (soon to be) released patches and updates has been obtained, the
strategy and planning phase starts. Many questions that are to be answered during this step
should already have been taken into account in the patch management policy. For example, it is
important to choose which type of patches to install first, or at all. Based on the severity of the
security hole, it may be necessary to initiate a faster deployment than usual, or to deploy a quick
workaround.

The first vital realization is that not all available patches and updates need to be installed. The
company’s patch management policy should define which types of patches and updates will be

11 https://cert.europa.eu
12 https://www.enisa.europa.eu
13 https://nvd.nist.gov/vuln/detail/CVE-2017-13080

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 14

installed on the network, to prevent complicated questions from slowing down the decision
process. For example, while a vendor may deem a certain update necessary, a company may not
need the specific function that it adds. Vendors may even choose to remove features that an
enterprise depends on. Ignoring the update from an early stage saves time by avoiding further
consideration, deployment efforts, and management, so administrators can allocate resources to
relevant updates and patches. In some circumstances, even security patches can be ignored if they
fix a security hole that cannot be abused in the context of the enterprise deployment of the
software. However, in this case, a “better safe than sorry” policy is recommended.

Regardless of the source, information about security issues or patches will almost always provide a
severity rating, which helps decide whether to deploy the patch or not, and if so, how quickly.
Either the vendor themselves or a relevant agency rates the severity of the security hole. The
severity rating helps decide which issues to patch first, if they apply to a product that is in use on
the company network.

The more severe the security hole, the quicker it should be plugged by deploying a patch. The
severity rating depends on several parameters. If an attacker can abuse the vulnerability only
locally, with physical access to the PC on which the software is installed, the severity would be
rated lower than an attack which can be carried out remotely (i.e. via the internet). Through some
attacks, hackers can only crash the affected software. Other issues allow them to read or write data
to the file system or to launch any program – allowing data to be stolen or connected devices to be
compromised. These severe security holes should be patched as soon as possible. Another factor is
the availability of knowledge about the vulnerability. If it has been discovered by the vendor, there
is only a small chance that it is actively being abused by hackers, who would have had to
separately discover the same flaw. However, if the security hole has been publicly disclosed by
security researchers, or if the vendor has acquired information about the issue from a vulnerability
trading company, many more parties may have access to information about the flaw and
successfully built attacks for it. In this case, vendors will have to proceed with patch publication as
soon as possible, and deployment should be planned accordingly. A complication is the fact that a
patch release often signals the start of a period of intense attacks: hackers reverse-engineer the
patch to find out how the vulnerability works and try to exploit unpatched systems as quickly as
possible.

In addition to the severity rating of patches, the network client roles that have been laid out in the
patch management policy should be considered. Clients in vulnerable roles (PCs that are used for
outside communication for example, or those that represent a vulnerable part of the
infrastructure) require more and swifter patching than machines that are used for tasks that do not
involve confidential information or machines that are not exposed. For each available patch,
carefully check if it should be deployed to the whole network, only to clients in certain roles, or not
at all. SMB networks are a little easier to maintain in this respect, because the number of roles is
more limited. Still, a distinction should be made between the different types of client roles in the
network. Rolling out the same patch configuration to all machines is usually not recommended.

At this stage, it is also important to find out if the selected patches have any dependencies. Some
software provides simple updaters that update any version of the software to the latest version.
Others use incremental updates, which require you to backtrack across versions to find all

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 15

appropriate patches, to be deployed in order. A software patch can also require a specific version
of a driver, framework or other product to be installed first. Information about such dependencies
is usually available in the patch description, available with the patch download or directly from the
software vendor. Dependencies can become increasingly complicated when planning an initial
deployment round for systems that have not been patched for a while. Windows updates and
service packs often have dependencies and can require a lot of attention to deploy correctly. Both
during the strategy phase and during the testing phase, special attention should be paid to see if
any patch requires additional installations.

The planning phase should also be used to clarify some questions about deployment. First and
foremost, decide on a point in time at which the patches should be installed. For security patches,
administrators may instinctively choose a “faster is better” approach. While swift deployment will
indeed quickly fix the security hole, there are a few more factors at play. To prevent compatibility
issues, patches need to be tested, which can take several days. The actual deployment itself also
needs time. In only a few cases, clients should be forced to reboot after installing a patch. If the
reboot is not forced, it might take a while before the patch actually comes into effect. Depending
on the network size, staged distribution might be required, further extending the deployment
timeframe. For mobile workers and VPN users, deployment might need even longer, because they
might not always be connected to the company network. (For clients with limited bandwidth, it
might even be useful to take file size into account when prioritizing patches.)

As a general guideline, making sure critical patches are deployed between 48 hours to one week
after their release is recommended. Non-critical security patches or functional updates can be
delayed. However, as mentioned, the planning strongly depends on network layout, patch strategy
and severity. Even in patch management, security has to be balanced with usability and
availability. For some systems, downtime might be so counterproductive that patch deployment
has to be delayed. For others, forcing the user to reboot may be acceptable. Also keep in mind that
it does not matter when the patch is deployed, but when it takes effect. Reboots, staged
distribution, or other delays may push the effective patch implementation back, requiring a
(temporary) workaround to be implemented. However, a workaround should always be an interim
measure: security holes are ultimately only reliably fixed by the proper patch.

To help streamline decision making, it can be helpful to specify a timeline in advance, taking all of
the network’s properties into account, with exploit severity as the only variable. Defining a patch
deployment compliance level quantifies this effort. It should be defined as a fixed percentage after
the first few days, gradually climbing up. Attaining 100 percent patch compliance is nearly
impossible, because some machines can be in use very rarely, or are currently undergoing
maintenance.

3.4. Step 4: Testing
The testing procedure is the most vital step in preventing complications during and after patch
deployment. Productivity can be limited severely if patch deployment renders clients (temporarily)
unusable. Unfortunately, the speed at which critical security patches should be deployed can
sometimes limit the extensiveness of patch tests. As with planning which patches to deploy,

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 16

security and usability are not always compatible. Realize that not all patches will, or even have to,
go through the same procedure. Small, simple patches do not cause problems with network load,
deployment or compatibility like larger patches may, so a lighter testing regime is in order. At the
same time, the reduced severity rating of minor patches allow them to be tested for a longer period
as they do not need to be deployed very quickly. In any case, every patch should be tested using a
baseline that ensures a problem-free deployment. As in other stages of patch management, SMB
administrators have a slightly easier job here. With less scenarios to test, the whole procedure can
be carried out a lot quicker, enabling swift patch deployment.

In order to perform patch testing, a testing environment has to be defined. Ideally, this
environment features all possible client configurations that exist in the network. Errors and
exceptions can only be located by emulating the deployment experience as closely as possible to
how it will be carried out in the real network. This means setting up several physical PCs, each with
a representative configuration of one of the network client roles. Complications arise when
planning patch tests for machines that have a central role in the network, such as servers. It is very
hard to set up a proper testing environment that takes into account all aspects of the network
configuration. One option is the deployment of a virtualized testing environment, with virtual
server(s) and clients. While this does allow for software and configuration problems to be located,
the physical aspect of patch deployment (e.g. bandwidth, free disk space) cannot be tested
properly on a virtual machine. Alternatively, a non-vital part of the actual network can be
designated as testing grounds. This allows an administrator to test patches in a very realistic
environment. As long as patches are only test-deployed to non-critical machines, an actual
network test can be very helpful. However, besides the obvious increased risk of complications,
this approach blends the testing step with the deployment step: keeping track of machines used
for tests and separating them from the rest of the clients can become complicated very quickly.

Once an appropriate set of machines has been chosen as testing environment, the patches to be
tested can be rolled out. Check the vendor’s patch description to see if there are any known issues
or other problems that explicitly need to be tested on the network. The first hurdle is the type of
installer that the vendor chose to use. A popular standard is Microsoft’s Windows Installer (MSI).
Since most if not all Windows machines have the necessary framework installed, many vendors
develop their installation using this technology. Windows Installer allows for easy version
management and unattended installations, important technologies to enable patch deployment.
However, it is not a completely self-serviced solution. To allow for a setup procedure without any
user interaction, tests should be run to see if the MSI process does not throw unexpected errors.
Missing installation media or cache files are among the most common causes of an interrupted MSI
installation or patching procedure and can severely disrupt a patch rollout over multiple network
clients. Vendors can also choose to deliver software with their own installer. Running this type of
installer in a testing environment provides an opportunity to look at its behavior and tweak its
parameters for mass deployment.

From a usability point of view, it is important to check if the patch installation requires a reboot. If
files that need to be patched are in use during patch deployment, they can only be replaced once
the client is restarted. It may be necessary to check which background services make use of files
that need to be patched, and shut them down temporarily before initiating the patch procedure.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 17

For more complex patches, such as Windows security patches or service packs, a reboot is almost
always required, regardless of prevention measures. If it turns out a reboot is required, the
deployment should be carefully planned in the next step of the patching procedure (Schedule &
assessment) to fall outside of or integrate with end user schedules or maintenance windows.

After finishing up the installation procedure, including one or more reboots, if necessary, the
system should generally still be functioning. Except for changes made by the patch, software
should still function as it did before. The system should still be able to boot, in a reasonable
amount of time, and the end user should not be surprised by dialog windows, message boxes,
cleanup processes or other remnants of patch installation.

Not just the installation procedure should be tested. Future compatibility problems or previously
untested scenarios can require a patch to be uninstalled. Ensure that the software can also be
restored to its pre-patch state. For standardized (MSI) installers, this can be a very simple
procedure. For software for which program files are not version managed, or products that use
custom installers, it can be necessary to create backup files before deploying the patch, to allow
for later patch rollback. Some patches are so pervasive that there will not be a possibility to
uninstall them without redeploying a substantive part of the system. Make sure to read all
documentation that accompanies the patch, to be able to anticipate compatibility issues,
installation complications or other problems. If there are any uncertainties which are not clarified
during the testing procedure, either decide to move the patch to the next patch cycle, pending
further testing, or deploy it in stages, carefully monitoring its effects on the first few deployment
groups.

The patch testing procedure is not only meant to check out the deployment, but also to gauge the
effects on end users. After successfully installing a patch, software may function differently than
before, due to new functions being added or due to a mitigation strategy for a critical issue. The
testing environment should feature end user work environments, to allow for a quick comparison
of pre- and post-patching situations. Depending on the amount of time spent on testing, various
end user workflows should be tested. A patch deployment does not need to be completely
transparent, but changes should be documented in advance and communicated with end users
well before the actual deployment.

As soon as the deployment process and patched software themselves function without problems,
patch testing moves on to external factors. Patched software may not be recognized by enterprise
white- or blacklisting software, especially if its executable files have been altered. Make sure to edit
application control lists to feature the updated version, or use a different level of granularity: filter
the software by product name, version or vendor. Similarly, Windows policies might interfere with
some functions of the patched software. If the testing procedure uncovers any potential conflicts,
try to reconfigure the software or adjust the problematic policy.

3.5. Step 5: Schedule and assessment
The Schedule and assessment step consolidates information from almost all of the previous tasks
in the patch management procedure. Network inventory, patch dependencies and deployment
behavior lead to a single deployment plan. By now, it is known which patches will have to be rolled

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 18

out, and which severity rating they have been assigned. However, severity is not the only factor in
deciding when to roll out a patch. Some patches can have specific system requirements or
compatibility issues that need to be mitigated before deployment can be commenced.
Furthermore, not all clients may be able to be patched at the same time. Some might be in use,
others may have very limited deployment windows scheduled. In any case, distributing the
patches gradually is recommended, as opposed to serving all clients with the updates at the same
time. Unexpected conflicts can be spotted before the whole network has had the patch applied; in
extreme cases the deployment can even be halted. If the testing procedure indicated possible
difficulties with a certain patch, schedule deployment for that specific patch only on a few clients
at first, expanding its reach only when rollout for the first machines has been successful.

Based on inventory and network client roles, clients can be divided into several groups, organized
by the time at which they will be patched. While, as a general rule, the most vulnerable machines
with the security holes of the highest severity should be patched first, practical circumstances can
dictate otherwise. Important is to prevent unnecessary delays in patch deployment. The actual
rollout process should be initiated soon after the testing and assessment phases are completed.

Physical limits can play a role in scheduling patch deployment. Distributing patches over the
network can put a substantial strain on the infrastructure. If bandwidth is limited, patch
deployment may have to be planned outside working hours. For clients that have only limited free
space available, hard disk cleanup tasks need to be planned before deploying any patches.

Once a schedule has been worked out, clients can be notified of the scheduled deployment.
Especially if the deployment phase will lead to a forced reboot or other types of client outage,
letting end users know in advance helps to foster understanding. In the actual deployment phase,
administrators can even choose to let users delay patch installations or reboots, if the client PC is
needed for work at that time.

Patching production servers should be done very carefully. To make sure that reboots and
unexpected downtime do not cause too much inconvenience, reserve a timeslot in advance and
announce the maintenance to all users concerned. A fallback server should be available to prevent
service disruptions if complications arise during the patching process.

3.6. Step 6: Patch deployment
At deployment time, all previous steps come together. With the patching schedule in hand, the
physical task of distributing patches to all network clients starts. However, deployment is more
than just pushing a patch installer to the clients. For older systems, for example, it can be useful to
first force a full virus scan, especially if the system has not been patched recently. Lingering
malware will be scooped up by the virus scan, to allow for a smooth patch installation.

After deployment, verification and reporting will help assess the effect of the patch deployment
and help discover issues. Before anything is deployed to the clients, it should therefore be defined
which actions will be logged or reported. Theoretically, any action that affects the client system
should be logged to enable later analysis. Keeping tabs of all file system actions and registry
mutations is one possibility, but be careful not to gather too much data. Never-ending activity logs
hinder swift analysis.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 19

Before running and installing a patch file, its authenticity should be verified. To check the
authenticity, vendors often provide checksum files or hashes against which downloads can be
checked.

Some vendors release diff-patches, publishing only the changes between one version and the next.
While this saves a significant amount of disk space and bandwidth, an individual patch has to be
released for each target version. To save time in building patches, most products are served with
full patch files, which contain complete versions of the files to be patched. This simplifies cases
where outdated clients would have had to be patched using multiple files, but the average patch
file size is significantly increased. The patch deployment phase can therefore severely influence
network bandwidth. All patches are downloaded once by a central patch management server,
which subsequently distributes them to all applicable network clients. To prevent the patching
process from disturbing other network jobs, try to limit the simultaneous network load by planning
deployment at a time when the network is not being used as heavily. Additionally, deployment
should be staged. Not all clients need to be patched at the same time, for compatibility and
performance reasons. Group clients together that are physically close to focus network usage only
on certain nodes, or add a few clients from each network zone to a group to spread the load
evenly. Even if the testing phase was completed without major exceptions or incidents, it is still
recommended to group clients based on risk: deploy patches first to standard desktop clients or
single platform server groups, before moving on to the more complicated machines in the
network.

Patches do not necessarily need to be installed directly after they have been pushed to the client.
Individual circumstances can delay patch installation. If patches are being pushed during working
hours, when the clients are in use, usability is better served by delaying patch installation until
shutdown, reboot or lock actions occur. Alternatively, configure the patch management software
to push patch files only once the actual patching process is starting, combining both actions and
allowing the complete process to take places during a scheduled maintenance window. Similarly,
if reboots are required, these should be planned to minimize inconvenience. Patch installation and
reboots can be forced, if the security risk outweighs the usability argument, but this should not be
the default. Alternatively, users can be given the option to delay patch installation or reboots for a
certain time, to give them the chance to finish their current work. To prevent software
deployments from becoming out of sync with the rest of the network clients, the delays should be
limited (e.g. to maximum one day for patch installation or one hour for reboots).

It is recommended to actively monitor patch deployment. If a patch fails to install, it can have
consequences for other patch installations that depend on it. Lack of free disk space is one very
common reason for patch installations to fail, but there can be many others. Patch installers often
return error codes when something goes wrong while running in unattended mode. Manual
intervention is often necessary when patch deployment goes wrong. For that reason, the patch
management policy should define how to handle exceptions, and within which timeframe.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 20

3.7. Step 7: Verification and reporting
Although file-based verification should already take place during the deployment process, the
moment patches have been deployed to all network clients marks the beginning of the formal
verification and reporting process. The post-deployment review consists of formal checks to see if
all planned deployments have been carried out correctly. If any exceptions occurred during the
patching process, analyze what happened exactly. By identifying the cause of an installation issue,
further patch deployment can be streamlined. Some errors may occur because of individual
problems with client hardware; others can be tracked to general domain policy or network load
issues.

Aside from examining logs that have been created during deployment, the installation result can
be checked in several ways. Assuming the Inventory update step has been carried out, a complete
inventory of software versions on each network client should be available. Refreshing the
inventory and comparing it against the previous version provides an accurate way to check if
software has indeed been updated to the desired version. However, not all patches are set to
increase the software version number. Minor patches, patches without a proper installer, or even
vendor oversight can lead to erratic version numbering, or none at all. Listing file checksums can
help, but increases the amount of data to be reported, which can be overwhelming. If enough
documentation is available, technical details about the vulnerability can reveal an easy way to
check if the patch has been installed correctly: try to carry out the exploit to see if the issue has
been remediated. Vulnerability scans can perform automated network scans to see if any
vulnerabilities still exist.

If a patch has not been installed correctly, there are several remedies. If network load or free disk
space were the problem, reducing the load or freeing space will allow the patch deployment to be
carried out successfully after a second try. However, if there are compatibility issues with existing
software, or other exceptions, a manual installation might be necessary. Having remote access to
the client in question is practical, to try to run the patch installer manually.

It is easier for an end-user to spot performance problems in the daily workflow than in an artificial
testing environment. Especially for clients with non-standard deployments, the risk of problems is
larger. By giving users the possibility to provide feedback about patches, administrators are made
aware of problems they could not find out by themselves. End user feedback will often lack the
specifics necessary to pinpoint the problem immediately, but can be a great indicator of patch
performance.

With or without user feedback, there should always be the technical possibility to roll back
patches. The testing phase should have guaranteed that the patches that have been deployed do
not cause major problems, but in individual cases, performance or functionality loss can always
occur. The administrator should be able to centrally initiate a patch rollback procedure.

4. G DATA Patch Management
G DATA offers support for all steps of the patch management procedure. Some of the functionality,
such as the software inventory, is available in all G DATA business solutions. To streamline patch

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 21

testing and deployment, G DATA Patch Management is available as an optional module for all
G DATA business solutions. It features full integration with G DATA Administrator and has the same
system requirements as G DATA Management Server. G DATA Patch Management supports the use
of Microsoft SQL Server Express, but for medium to large networks, the use of a dedicated SQL
Server is recommended.

4.1. Step 1: Inventory update
Firstly, it is important to take and keep an inventory of machines in the network and their software
and hardware. To support the patch management procedure, it should be known which software
versions are in use on the company network at any time. G DATA provides a streamlined inventory
tool as part of its business solutions. The Clients module lets administrators access a full list of
installed software for each network client. The inventory can be organized to provide different
types of information. The default view shows a flat list of all software that is installed on the
selected clients. The listing includes the installation date, the software vendor and the currently
installed version. By grouping the items according to name, for each product a quick overview is
available to check if the latest version has been installed on all machines.

At this stage, it is recommended to check if network clients are running any software that is not
part of the standard deployment. Administrators cannot be aware of potential security risks for all
software in existence. Using a software inventory helps spot unsanctioned software installations.
Administrators can decide to either add the software to their official deployment list (Whitelist), or
to remove them and block them from being installed or run (Blacklist). Users of G DATA Endpoint
Protection Business can use the PolicyManager module to apply network-wide policies,
whitelisting or blacklisting software to control deployment.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 22

Image 6: G DATA Administrator > Clients > Software

Not only is it important to keep track of software; successful deployment also depends on physical
prerequisites like network load and hardware specifications. The latter can be listed using the
Hardware inventory function. A wide range of specifications can be tracked. Physical specs, like
CPU speed and the amount of internal memory, help predict patch deployment speed and
performance. Important is knowing the amount of free disk space available, to prevent patch
deployment from generating errors. Additionally, bios and motherboard firmware versions can be
tracked, to compare against newly published firmware.

4.2. Step 2: Information gathering
As soon as an inventory has been established, administrators should keep up with information
about the latest patches to compare to existing installations. G DATA Patch Management provides
a list of latest available patches for a wide range of products on the Patch configuration tab. The
database is updated automatically as soon as vendors publish a new patch. The list can be
grouped and sorted to gain an overview of important patches for exactly those applications that
administrators are interested in. More information, and often full release notes, can be obtained by
right-clicking on a patch and checking its properties.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 23

Image 7: G DATA Administrator > PatchManager > Patch configuration

4.3. Step 3: Strategy and planning
Administrators can directly check one or more patches against specific client systems. To check a
single patch for applicability, right-click it and click Check patches for applicability. This schedules
a Patch applicability job for the specified client(s). Alternatively, configure G DATA Patch
Management to automatically check all high priority patches for applicability on the PatchManager
> Settings panel. Finally, administrators could also choose to use the Tasks module to plan a Patch
applicability job that is executed as soon as a new patch is available.

Although the PatchManager > Settings panel lets administrators configure G DATA Patch
Management to automatically install high priority patches, it is recommended to plan patch tests
beforehand. After scanning for applicability, select the appropriate server or client(s) in the client
management area and open the PatchManager > Status overview tab. Group the patches by
dragging the Status column to the group bar above the list. This helps to quickly locate patches
that are applicable, not applicable or have already been installed. Patches that are applicable for
the client system(s) are the ones that need to be reviewed, tested and finally deployed.

To help decide whether to deploy a certain patch or not, G DATA Patch Management provides a set
of information for each patch. The Patch configuration list shows the products that a patch applies
to, as well as its release date, its official title, and its priority. For each patch, a full description and
usually a URL to the official release notes are provided. These pieces of information help
administrators decide how severe a certain security issue is, and how quickly its patch needs to be
deployed. Patches with a higher severity should be installed with a higher priority than non-critical

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 24

patches. At the same time, not all software that is in use across the network is as important: critical
applications should always be patched before less critical applications. This is where the patch
management policy is relevant, by helping to decide quickly which patches to deploy in which
order (see chapter 2.1).

The important point to remember is that not all patches should be installed by default. The point
of patch management automation is not to take decision making out of the equation, but to
provide enough details to make informed decisions, and to streamline the deployment process.
G DATA Patch Management provides as much information as it can, but the decision to test and
finally deploy a patch, is always up to the administrator.

4.4. Step 4: Testing
Once it has been decided that a specific patch will be deployed, the testing procedure can start
(step 4). It is recommended to use a set of representative machines to test patches. These
machines should be similar to the machines that are actually in use, in order to test for possible
problems without disrupting the actual clients. However, not every administrator will have access
to enough machines to build a small-sized replica of their network. In that case, virtualization is the
recommended method – if there is really no other solution, a non-vital subset of the network can
be used. In any case, using G DATA Administrator, the test environment can be organized in one or
more groups. Patches can be deployed to one or more clients in one or more groups, to observe
the installation and its effects (see chapter 3.4 for more information about which machines to
include in the testing environment).

Image 8: G DATA Administrator > Tasks > Software distribution job (Test)

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 25

To deploy one or more patches to a test group, select the group in the client management area.
Open the Tasks module and create a new Software distribution job. Select the patch(es) to be
distributed and specify at which time this should occur. Selecting the patch can be made easier by
grouping the patch list, for example by Vendor or Product. Repeat this process with all appropriate
patches and for all appropriate test groups. It is recommended to test only one patch per system at
the same time, to be able to pinpoint possible problems on a specific patch. Under PatchManager >
Status overview, the status of each individual patch can be tracked for the appropriate clients.

Image 9: G DATA Administrator > ReportManager > New module

During the testing period, as well as the verification phase after deployment, the ReportManager
module can provide statistics about deployment as well as information about machines are
generating errors. Particularly interesting are reports about the patches which are not installed
most frequently, about computers with unexecuted software distribution jobs (which may point to
installation problems), or about computers with the most frequent patch requests or refusals (for
analysis afterwards).

In addition to the PatchManager and ReportManager modules, patch testing status can also be
located in the Tasks module itself. Open the relevant task and check the details to see the status
for each patch. If it appears that a patch has not been deployed successfully, update the Software
inventory for that client to double-check. If the patch cannot be deployed, check the system locally
and try a manual patch deployment. If a patch is causing problems during the testing phase, it
should never be deployed automatically on a large scale.

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 26

4.5. Step 5: Schedule and assessment
After finishing the testing stage, the actual deployment can be planned. With all applicable patches
located and tested, a schedule can be set up. Using the patch management policy, decide in which
order the patches should be deployed and to which (groups of) machines at first. Use the Messages
function of the Clients module to notify clients of the patch schedule and to warn them of potential
reboots.

4.6. Step 6: Patch deployment
For patches that have been properly tested, a Software distribution job can be planned. Use the
Tasks module to schedule a Software distribution job with the appropriate patches for the
appropriate clients. To prevent interference with end user workflows, patches can be scheduled to
be deployed at a specific time, or directly after the next boot or login. An optional delay prevents
patches from being deployed while other system-intensive processes may be running.

 Image 10: G DATA Administrator > Tasks > Software distribution job (Deployment)

4.7. Step 7: Verification and reporting
To verify and evaluate patch deployment, the inventory tools can be of great assistance.
Additionally, G DATA Patch Management offers the possibility for direct user feedback. If the
administrator enables the respective option, end users can request patches to be rolled back, due
to performance or compatibility issues. Patches that are applicable to the system, but have not
been deployed yet or will not be deployed at all, can be requested by end users in case there is an
urgent need to patch a product. The distribution and rollback request system integrates directly

G DATA TechPaper #0271 Patch Management Best Practices

Copyright © 2018 G DATA Software AG 27

with the PatchManager module and allows administrators to plan a distribution or rollback job
directly from the Reports module. Consider the following example: an end user can no longer use
application 1 and is waiting for a patch to be deployed. During the testing phase, the administrator
discovers compatibility issues with application 2, and decides the patch will not be deployed to the
network. The end user does not use the affected feature of application 2, and decides that the
patch for application 1 should be deployed anyway. Through G DATA Patch Management, the user
can request the patch to be installed. Upon approval of the request, patch distribution will take
place like it would have done in a normal deployment scenario.

	1. Introduction
	1.1. Definition
	1.2. Significance
	1.3. Compliance

	2. Patch management
	2.1. Patch management policy
	2.2. Enterprise versus small businesses (SMB)

	3. Patch management procedure
	3.1. Step 1: Inventory update
	3.2. Step 2: Information gathering
	3.3. Step 3: Strategy and planning
	3.4. Step 4: Testing
	3.5. Step 5: Schedule and assessment
	3.6. Step 6: Patch deployment
	3.7. Step 7: Verification and reporting

	4. G DATA Patch Management
	4.1. Step 1: Inventory update
	4.2. Step 2: Information gathering
	4.3. Step 3: Strategy and planning
	4.4. Step 4: Testing
	4.5. Step 5: Schedule and assessment
	4.6. Step 6: Patch deployment
	4.7. Step 7: Verification and reporting

